您现在的位置:首页 > 新闻资讯 > 行业动态
AI芯片的过去和未来
发布时间:2019-8-20 13:50:52
 

AI芯片的过去和未来


相信你一定还记得击败了李世石和柯洁的谷歌“阿尔法狗”(Alpha Go),那你知道驱动Alpha Go的是什么吗?

如果你觉得Alpha Go和人相似,只不过是把人脑换成了芯片,那么你就大错特错了。击败李世石的Alpha Go装有48个谷歌的AI芯片,而这48个芯片不是安装在Alpha Go身体里,而是在云端。所以,真正驱动Alpha Go的装置,看上去是这样的...

 

因此李世石和柯洁不是输给了“机器人”,而是输给了装有AI芯片的云工作站。

然而近几年,AI技术的应用场景开始向移动设备转移,比如汽车上的自动驾驶、手机上的人脸识别等。产业的需求促成了技术的进步,而AI芯片作为产业的根基,必须达到更强的性能、更高的效率、更小的体积,才能完成AI技术从云端到终端的转移。

目前,AI芯片的研发方向主要分两种:一是基于传统冯·诺依曼架构的FPGA(现场可编程门阵列)和ASIC(专用集成电路)芯片,二是模仿人脑神经元结构设计的类脑芯片其中FPGA和ASIC芯片不管是研发还是应用,都已经形成一定规模;而类脑芯片虽然还处于研发初期,但具备很大潜力,可能在未来成为行业内的主流。

这两条发展路线的主要区别在于,前者沿用冯·诺依曼架构,后者采用类脑架构。你看到的每一台电脑,采用的都是冯·诺依曼架构。它的核心思路就是处理器和存储器要分开,所以才有了CPU(中央处理器)和内存。而类脑架构,顾名思义,模仿人脑神经元结构,因此CPU、内存和通信部件都集成在一起。

接下来将为你分别介绍两种架构的简要发展史、技术特点和代表性产品。

从GPU到FPGA和ASIC芯片

2007年以前,受限于当时算法和数据等因素, AI 对芯片还没有特别强烈的需求,通用的 CPU 芯片即可提供足够的计算能力。比如现在在读这篇文章的你,手机或电脑里就有 CPU 芯片。

之后由于高清视频和游戏产业的快速发展, GPU (图形处理器)芯片取得迅速的发展。因为 GPU 有更多的逻辑运算单元用于处理数据,属于高并行结构,在处理图形数据和复杂算法方面比 CPU 更有优势,又因为 AI 深度学习的模型参数多、数据规模大、计算量大,此后一段时间内 GPU 代替了 CPU ,成为当时 AI 芯片的主流。

GPU 比 CPU 有更多的逻辑运算单元(ALU)

 

然而 GPU 毕竟只是图形处理器,不是专门用于 AI 深度学习的芯片,自然存在不足,比如在执行 AI 应用时,其并行结构的性能无法充分发挥,导致能耗高。

与此同时, AI 技术的应用日益增长,在教育、医疗、无人驾驶等领域都能看到 AI 的身影。然而 GPU 芯片过高的能耗无法满足产业的需求,因此取而代之的是 FPGA 芯片,和 ASIC 芯片。

那么这两种芯片的技术特点分别是什么呢?又有什么代表性的产品呢?

“万能芯片” FPGA

FPGA(FIELD-PROGRAMMABLE GATE ARRAY),即 “现场可编程门阵列”,是在 PAL、GAL、CPLD 等可编程器件的基础上进一步发展的产物。

FPGA 可以被理解为“万能芯片”。用户通过烧入 FPGA 配置文件,来定义这些门电路以及存储器之间的连线,用硬件描述语言(HDL)对 FPGA 的硬件电路进行设计。每完成一次烧录,FPGA内部的硬件电路就有了确定的连接方式,具有了一定的功能,输入的数据只需要依次经过各个门电路,就可以得到输出结果。

用大白话说,“万能芯片” 就是你需要它有哪些功能、它就能有哪些功能的芯片。

尽管叫“万能芯片”,FPGA也不是没有缺陷。正因为 FPGA 的结构具有较高灵活性,量产中单块芯片的成本也比 ASIC 芯片高,并且在性能上,FPGA 芯片的速度和能耗相比 ASIC 芯片也做出了妥协。

也就是说,“万能芯片” 虽然是个 “多面手”,但它的性能比不上 ASIC 芯片,价格也比 ASIC 芯片更高。

 

手机信号放大器